Dynamical Properties, Deformations, and Chaos in a Class of Inversion Invariant Jerk Equations

نویسندگان

چکیده

In this paper, we consider a class of jerk equations which are invariant to inversion. We discuss the stability and some bifurcations considered equation. addition, construct integrable deformations in order stabilize equilibrium points. Finally, introduce piecewise chaotic system belongs equations.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CONTROL OF CHAOS IN A DRIVEN NON LINEAR DYNAMICAL SYSTEM

We present a numerical study of a one-dimensional version of the Burridge-Knopoff model [16] of N-site chain of spring-blocks with stick-slip dynamics. Our numerical analysis and computer simulations lead to a set of different results corresponding to different boundary conditions. It is shown that we can convert a chaotic behaviour system to a highly ordered and periodic behaviour by making on...

متن کامل

Statistical properties of dynamical chaos.

We present a survey of the results obtained by the authors on statistical description of dynamical chaos and the effect of noise on dynamical regimes. We deal with nearly hyperbolic and nonhyperbolic chaotic attractors and discuss methods of diagnosing the type of an attractor. We consider regularities of the relaxation to an invariant probability measure for different types of attractors. We e...

متن کامل

stability and attraction domains of traffic equilibria in day-to-day dynamical system formulation

در این پژوهش مسئله واگذاری ترافیک را از دید سیستم های دینامیکی فرمول بندی می کنیم.فرض کرده ایم که همه فاکتورهای وابسته در طول زمان ثابت باشند و تعادل کاربر را از طریق فرایند منظم روزبه روز پیگیری کنیم.دینامیک ترافیک توسط یک نگاشت بازگشتی نشان داده می شود که تکامل سیستم در طول زمان را نشان می دهد.پایداری تعادل و دامنه جذب را توسط مطالعه ویژگی های توپولوژیکی تکامل سیستم تجزیه و تحلیل می کنیم.پاید...

Chaos in a Fractional-Order Jerk Model using Tanh Nonlinearity

Chaos in a fractional-order jerk model using hyperbolic tangent nonlinearity is presented. A fractional integrator in the model is approximated by linear transfer function approximation in the frequency domain. Resulting chaotic attractors are demonstrated with the system orders as low as 2.1.

متن کامل

some properties of fuzzy hilbert spaces and norm of operators

in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2022

ISSN: ['0865-4824', '2226-1877']

DOI: https://doi.org/10.3390/sym14071318